Lecture 5

Applications of Operational Amplifiers

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/ E-mail: p.cheung@imperial.ac.uk

PYKC 22 Oct 2024

Voltage to current converter

- PNP transistor Q1 must be in linear region
- Op-amp forces V- = Vin
- R (with 5V) determines the current as $I_R = (5 V_{in})/R$
- Assume no current flows into input of op-amp
- $I_C = I_E I_B$, assume current gain β >> 1, $I_C ≈ I_E ≈ I_R$
- ✤ Can use FET or MOSFET in place of BJT

Current amplifier (photo detector)

- Photodiode generates reverse current proportional to light intensity (visible or IR) received.
- Inverting op-amp used to convert diode current into a voltage.
- ✤ R2 and R3 provides an offset at the output when photodiode current is 0.

Optical isolating amplifier

- Phototransistor provides electrical isolation (e.g. 5kV) between two part of circuit.
- Consist of a light emitting diode and a photosensitive transistor.
- Diode current, through light, is transferred to transistor output current (current transfer ratio, CTR).
- The relationship between the diode current i_F and transistor current i_C is **not** linear.

Optical isolating amplifier

- To mitigate the non-linear characteristics of the phototransistor, use two "matching" phototransistors as shown above.
- Output of 1st op-amp u_2 is adjusted so that the current $i_2 = -i_1 = -\frac{u_1}{R_1}$.
- Assuming $R_4 = R_4'$, then $i'_2 = i_2$. Hence, $u_3 = -i'_2 \times R_3 = \frac{R_3}{R_1} \times u_1$.

Half-wave rectifier & Peak detector

- Diode and resistor simple half-wave rectifier
- Commonly used in power electronics or and multimeters

- C_L charges to V_{in} peak V_D
- Diode prevents C_L discharging when V_{in} drops
- R_L discharges capacitor with time constant R_LC_L
- CL charges again on the positive cycle

Rectifier with op-amp buffering

- ♦ Assume R1 = R2
- Negative cycles result in an inverting amplifier with gain = -1
- Op-amp drives output with low impedance
- Positive cycles, op-amp isolated from output
- Poor full-wave rectification

- D1 provides feedback path for negative input cycles
- D2 provides feedback path for positive input cycles
- Op-amp operating throughout entire cycle

Single power supply "rectifier"

 Single power supply rectifier is implemented by shifting the reference voltage to ¹/₂ V_{DD}

Full-wave rectifier

- Precision full-wave rectifier with two op-amps
- Op-amp 1 provides two separate half of the rectified signals
- Op-amp 2 sums two half cycles together

Integrator

Differentiator

- Swap R and C
- Implement a differentiator
- Not used often because circuit tends to produce noisy output

Simple Oscillator

- Combine comparator with hysteresis and RC network = oscillator
- Voltage at V+ change instantly with V_{out}:

$$V_H = 2.5 \left(1 + \frac{R1}{R1 + R2} \right)$$
$$V_L = 2.5 \left(\frac{R2}{R1 + R2} \right)$$

- V- = V_{th} rises and falls exponentially with a time constant of RC between V_H and V_L
- This is determined by the equation:

$$V_{th} = V_f + (V_i - V_f)e^{-\frac{t}{\tau}}$$

 V_i = initial value, V_f = final value, τ = time constant RC

Comparator with hysteresis

- ✤ V_{out} swings between V_{DD} and V_{SS}
- V_{out} changes state when V+ reaches V_{REF}
- ✤ Apply KCL at V+:

$$\frac{V_{REF} - V_{in}}{R1} = \frac{V_{out} - V_{REF}}{R2}$$
$$\Rightarrow V_{in} = V_{REF} \left(1 + \frac{R1}{R2}\right) - V_{out}\left(\frac{R1}{R2}\right)$$

• If R1 = 0 or R2 =
$$\infty$$
, V_{th} = V_{REF}

$$V_{th(H)} = V_{REF} \left(1 + \frac{R1}{R2} \right) - V_{SS}(\frac{R1}{R2})$$
$$V_{th(L)} = V_{REF} \left(1 + \frac{R1}{R2} \right) - V_{DD}(\frac{R1}{R2})$$

• Hysteresis =
$$V_{th(H)} - V_{th(L)}$$

Triangular and Square wave generator

- Better oscillator circuit using integrator + comparator with hysteresis
- Integrator output produces a triangular signal
- Comparator (with hysteresis) produces a square signal
- Feedback circuit ensures oscillation is maintained

Pulse-width Modulator

- ✤ Comparing triangular signal with V_{in} -> pulse-width modulated output
- ✤ Frequency of triangular signal >> V_{in} frequency
- Output pulse width proportional to value of V_{in}
- Recover V_{in} by lowpass filtering V_{PWM}